The Crystal Structure of $\mathbf{N a}_{2} \mathbf{T i}_{3} \mathbf{O}_{\mathbf{7}}$

By Sten Andersson
Department of Chemistry, University of Melbourne (on leave from the University of Stockholm, Sweden) and A. D. Wadsley
Division of Mineral Chemistry, C.S.I.R.O. Chemical Research Labs., G.P.O. Box 4331, Melbourne, Australia

(Received 20 December 1960 and in revised form 21 March 1961)
The crystal structure of $\mathrm{Na}_{2} \mathrm{Ti}_{3} \mathrm{O}_{7}$ has been determined, using single-crystal methods. The space group is $P 2_{1} / m$, with the unit-cell dimensions

$$
a=8.571, b=3.804, c=9.135 \AA, \beta=101.57^{\circ} .
$$

The structure consists of layers of the composition $\left(\mathrm{Ti}_{3} \mathrm{O}_{7}\right)^{2-}$. These are built up from blocks of six TiO_{6} octahedra sharing edges, which are joined by having octahedral corners in common. The layers are held together by sodium ions which occur in two different kinds of crystallographic site.

Introduction

The alkali metals form a composition series of ternary oxides with titanium dioxide, $A_{2} \mathrm{O} . n \mathrm{TiO}_{2}(1 \leq n \leq 6)$. We are examining selected members with the object of clarifying the relationships within the system between chemical composition and crystal structure. The dititanate $\mathrm{K}_{2} \mathrm{Ti}_{2} \mathrm{O}_{5}$ was described recently, (Andersson and Wadsley, 1961), and the structure of the trititanate $\mathrm{Na}_{2} \mathrm{Ti}_{3} \mathrm{O}_{7}$ is now reported.

Experimental

$\mathrm{Na}_{2} \mathrm{CO}_{3}$ and TiO_{2} (anatase) in the mole ratio 1:2 were heated together at $1000^{\circ} \mathrm{C}$ to remove CO_{2} until constant weight was achieved. The crucible was then heated to about $1300^{\circ} \mathrm{C}$. Sodium is evidently lost on fusion, as the clear melt, on cooling, consisted of a single phase with the formula $\mathrm{Na}_{2} \mathrm{Ti}_{3} \mathrm{O}_{7}$, a compound previously believed to have an incongruent melting point (Levin and McMurdie, 1959).

Table 1. Crystallographic Constants for $\mathrm{Na}_{2} \mathrm{Ti}_{3} \mathrm{O}_{7}$

Symmetry	Monoclinic
Unit-cell dimensions	$a=8.571 \pm 0 \cdot 002 \AA$
	$b=3.804 \pm 0.002$
	$c=9.135 \pm 0.002$
	$\beta=101 \cdot 57^{\circ} \pm 0.05^{\circ}$
Systematic absent reflexions	$0 k 0$ with $k \neq 2 n$
Possible space groups	$P 2_{1}, P 2_{1} / m$
$D_{o}=3.40 \pm 0 \cdot 05, D_{c}=3.43$ g.cm. $.^{-3}, Z=2$	

The colourless rod-like crystals, of monoclinic symmetry elongated along the b axis, have the crystallographic constants given in Table 1. These were determined from a Guinier powder pattern (Table 2) internally calibrated with potassium chloride as a standard.

Table 2. Guinier powder pattern of $\mathrm{Na}_{2} \mathrm{Ti}_{3} \mathrm{O}_{7}$ $\mathrm{Cu} K x_{1}$ radiation

I	$\sin ^{2} \theta_{0}$	$h k l$	$\sin ^{2} \theta_{c}$
vvw	$0 \cdot 00746$	001	0.00741
st	$0 \cdot 00847$	100	0.00842
$v w$	$0 \cdot 01270$	10̄	0.01266
m	$0 \cdot 01908$	101	$0 \cdot 01899$
$v w$	$0 \cdot 02972$	002	$0 \cdot 02963$
$v w$	$0 \cdot 03478$	20̄	$0 \cdot 03474$
st	$0 \cdot 04941$	110	0.04941
vvw	$0 \cdot 05055$	$20 \overline{2}$	0.05063
w	0.05995	111	0.05999
$v w$	$0 \cdot 06551$	$10 \overline{3}$	0.06559
w	$0 \cdot 06660$	003	$0 \cdot 06667$
$v w$	$0 \cdot 07068$	012	$0 \cdot 07063$
$v w$	0.07268	$11 \overline{2}$	0.07271
w	0.07471	210	0.07466
w	0.07570	21]	0.07574
$v w$	0.08139	$20 \overline{3}$	0.08134
$v w$	0.08464	103	0.08459
$v w$	$0 \cdot 08541$	112	$0 \cdot 08538$
w	$0 \cdot 08639$	$30 \overline{2}$	$0 \cdot 08637$
$v w$	0.08833	211	0.08840
$v w$	0.09170	$21 \overline{2}$	0.09163
vvw	$0 \cdot 09268$	301	$0 \cdot 09264$
vvw	$0 \cdot 10654$	115	0.10659
vvw	$0 \cdot 10751$	013	$0 \cdot 10767$
m	$0 \cdot 13897$	$40 \overline{2}$	$0 \cdot 13894$
m	0.13971	104	0.13961
$s t$	0•16399	020	0-16399

The $h 0 l$ and $h 1 l$ reflexions were recorded with copper radiation on an integrating Weissenberg goniometer using the multiple-film technique, and estimations of intensity were made visually by means of a standard scale. The scattering curves for Ti^{3+} (Freeman and Watson, 1959) adjusted to Ti^{4+} at low angles, for Na^{+} (Freeman, 1959) and for O^{2-} (Suzuki, 1960) were used for the structure-factor calculations.

Structure determination

A simple orthogonal sub-cell with strong similarities

Table 3. Comparison between observed and calculated structure factors

Table 3 (cont.)											
$h k l$	F_{o}	F_{c}	$h k l$	F_{0}	F_{c}	$h k l$	F_{o}	F_{c}	$h k l$	F_{0}	F_{c}
515	59	42	613	68	57	710	<59	16	$81 \overrightarrow{5}$	<56	$\overline{3}$
514	< 58	29	612	113	120	711	82	80	$81 \overline{6}$	<53	26
513	< 56	$\overline{3} 7$	611	< 56	$1 \overline{9}$	$71 \overline{2}$	< 58	28	817	99	127
512	153	161	610	<55	$\overline{4}$	$71 \overline{3}$	< 59	8	913	60	$\overline{8} \overline{9}$
511	65	64	$61 \overline{\mathrm{I}}$	82	$\overline{9} \overline{0}$	$71 \overrightarrow{4}$	69	60	912	<45	$\overline{9}$
510	56	$\overline{47}$	$61 \overline{2}$	<55	$\overline{3} \overline{8}$	715	< 59	$\overline{3}$	911	<48	32
51]	118	$\overline{1} \overline{3}$	$61 \overline{3}$	< 55	21	$71 \overline{6}$	< 58	4	910	115	$\overline{1} \overline{5}$
$51 \overline{2}$	102	101	$61 \overline{4}$	< 56	$\overline{5} 0$	$71 \overline{7}$	64	66	$91 \overline{\mathrm{I}}$	<53	17
$51 \overline{3}$	50	57	$61 \overline{5}$	<57	55	$71 \overline{8}$	64	79	$91 \overline{2}$	< 53	$\overline{1} 4$
$51 \overline{4}$	50	$\overline{5} \overline{5}$	$61 \overline{6}$	< 59	17	$71 \overline{9}$	< 40	10	913	91	119
$51 \overline{5}$	91	$\overline{9} \overline{2}$	$61 \overline{7}$	<58	$\overline{2} 7$	815	<37	16	$91 \overline{4}$	51	55
$51 \overline{6}$	<58	6	$61 \overline{8}$	<55	10	814	< 45	8	$91 \overline{5}$	<48	$\overline{3} \overline{7}$
$51 \overline{7}$	< 59	4	$61 \overline{9}$	<48	$\overline{4} 1$	813	73	81	$91 \overline{6}$	<44	30
$51 \overline{8}$	64	$\overline{8} \overline{0}$	6,1,10	<37	28	812	< 55	$\overline{3} 7$	10,1, 0	54	$7 \overline{7}$
$51 \overline{9}$	<53	34	716	81	84	811	< 58	$\overline{1} \overline{4}$	10,1, $\overline{1}$	<40	$1 \overline{3}$
5, $1, \overline{1} \overline{0}$	<44	I	715	<50	19	810	82	$\overline{8} \overline{9}$	10,1, ${ }^{2}$	<40	11
617	49	$\overline{5} \overline{4}$	714	<54	40	$81 \overline{1}$	< 59	$\underline{3} 0$	10,1, $\overline{3}$	<40	10
616	102	95	713	<58	32	$81 \overline{2}$	< 59	$\overline{1} 4$	10,1, $\overline{4}$	<39	$\overline{1}$
615	81	84	712	< 59	40	$81 \overline{3}$	< 59	23	10,1,5	<34	11
614	< 59	$\overline{29}$	711	<59	1	$81 \overline{4}$	116	130			

to a perovskite structure type could easily be recognized. The real cell is related to this by the index matrix,

$20 \overline{\frac{1}{2}} / 010 / \overline{\mathbf{1}} 0 \overline{2}$

and from this expression a simple trial-and-error procedure led readily to a structure for the compound in terms of an idealised octahedral model agreeing with the chemical formula, the unit cell size and with its spacegroup alternatives. The Patterson function $P(u, w)$ was then used to derive the positions of the metal atoms more precisely since, in structures of this kind, they seldom occupy the exact centres of idealised octahedra.

The space groups $P 2_{1}$ and $P 2_{1} / m$ (Table 1) are both centro-symmetrical in projection on (010). The atomic parameters, obtained from the Patterson function, were refined by successive electron-density and difference Fourier projections on to this plane, and a final value of the reliability factor of $13 \cdot 2 \%$ was reached, the non-observed terms being omitted. The parameters x and z for each atom were next combined with the constant $y=\frac{1}{4} b$ required by the space group $P 2_{1} / m$ in a set of $h 1 l$ structure factors, to give a reliability of 14.9% on comparison with the observations. This was considered to be adequate proof of this space
group, and no attempt was made to introduce different values for y which would be required by the possible alternative $P 2_{1}$.

Table 4. Fractional atomic parameters All atoms in general positions $2\left(\right.$ e) for $P 2_{1} / m, \pm x, \frac{1}{4}, z$

Atom	x	z	Atom	x	z
Na_{1}	0.682	0.595	O_{2}	0.140	0.473
Na_{2}	0.508	0.154	O_{3}	0.438	0.645
Ti_{1}	0.0278	0.2806	O_{4}	0.314	0.885
Ti_{2}	0.2467	0.6730	O_{5}	0.997	0.745
Ti_{3}	0.1420	0.9811	O_{6}	0.791	0.313
O_{1}	0.221	0.195	O_{7}	0.905	0.031

No isotropic temperature factor was found on comparison of the observed and calculated structure factors (Table 3), and it is possible that the effects of thermal motion are approximately cancelled by some absorption within the crystal. The atomic positions are given in Table 4 and the interatomic distances in Table 5. The final difference synthesis was used to obtain values for the accuracy of the atomic positions by methods oulined in Lipson \& Cochran (1953; p. 307 et seq.); these are not included in Table 4 but are averaged for all atoms of the same kind, leading to average standard deviations for $\mathrm{Ti}-\mathrm{O}$ of $\pm 0.025 \AA$,

Table 5. Interatomic distances in $\mathrm{Na}_{2} \mathrm{Ti}_{3} \mathrm{O}_{7}$

	No.	Length									
$\mathrm{Ti}_{1}-\mathrm{O}_{1}$	1	$1.97 \AA$	$\mathrm{Ti}_{2}-\mathrm{O}_{3}$	1	1.71 \&	$\mathrm{Ti}_{3}-\mathrm{O}_{4}$	I	1.86 \AA	$\mathrm{Na}_{1}-\mathrm{O}_{2}$	2	2.59 A
$\mathrm{Ti}_{1}-\mathrm{O}_{2}$	I	1-83	$\mathrm{Ti}_{2}-\mathrm{O}_{4}$	1	1.91	$\mathrm{Ti}_{3}-\mathrm{O}_{1}$	1	1.93	$\mathrm{Na}_{1}-\mathrm{O}_{1}$	2	$2 \cdot 71$
$\mathrm{Ti}_{1}-\mathrm{O}_{6}$	1	$2 \cdot 11$	$\mathrm{Ti}_{2}-\mathrm{O}_{2}$	1	1.87	$\mathrm{Ti}_{3}-\mathrm{O}_{7}^{1}$	1	$2 \cdot 17$	$\mathrm{Na}_{1}-\mathrm{O}_{3}$	2	2.93
$\mathrm{Ti}_{1}-\mathrm{O}_{7}$	1	$2 \cdot 31$	$\mathrm{Ti}_{2}-\mathrm{O}_{5}$	1	$2 \cdot 34$	$\mathrm{Ti}_{3}-\mathrm{O}_{5}$	1	2.25	$\mathrm{Na}_{1}-\mathrm{O}_{3}{ }^{1}$	1	$2 \cdot 23$
$\mathrm{Ti}_{1}-\mathrm{O}_{5}$	2	1.92	$\mathrm{Tj}_{2}-\mathrm{O}_{6}$	2	$1 \cdot 94$	$\mathrm{Ti}_{3}-\mathrm{O}_{7}$	2	1.94	$\mathrm{Na}_{1}-\mathrm{O}_{5}$	1	$2 \cdot 80$
$\mathrm{O}_{1}-\mathrm{O}_{2}$	1	$2 \cdot 76$	$\mathrm{O}_{2}-\mathrm{O}_{5}$	1	$2 \cdot 97$	$\mathrm{O}_{1}-\mathrm{O}_{7}{ }^{1}$	1	$2 \cdot 82$	$\mathrm{Na}_{1}-\mathrm{O}_{6}$	1	$2 \cdot 91$
$\mathrm{O}_{1}-\mathrm{O}_{7}$	1	$2 \cdot 82$	$\mathrm{O}_{2}-\mathrm{O}_{3}$	1	$2 \cdot 72$	$\mathrm{O}_{1}-\mathrm{O}_{4}$	1	$3 \cdot 09$			
$\mathrm{O}_{7}-\mathrm{O}_{6}$	1	$2 \cdot 93$	$\mathrm{O}_{3}-\mathrm{O}_{4}$	1	$2 \cdot 62$	$\mathrm{O}_{5}-\mathrm{O}_{3}^{1}$	1	$2 \cdot 89$	$\mathrm{Na}_{2}-\mathrm{O}_{1}$	1	2.56
$\mathrm{O}_{2}-\mathrm{O}_{6}$	1	$3 \cdot 11$	$\mathrm{O}_{4}-\mathrm{O}_{5}$	1	$2 \cdot 74$	$\mathrm{O}_{5}-\mathrm{O}_{4}$	1	$2 \cdot 74$	$\mathrm{Na}_{2}-\mathrm{O}_{4}{ }^{1}$	1	$2 \cdot 68$
$\mathrm{O}_{5}-\mathrm{O}_{6}$	2	$2 \cdot 74$	$\mathrm{O}_{6}-\mathrm{O}_{5}$	2	$2 \cdot 74$	$\mathrm{O}_{7}-\mathrm{O}_{7}{ }^{1}$	2	$2 \cdot 64$	$\mathrm{Na}_{2}-\mathrm{O}_{6}$	1	$2 \cdot 57$
$\mathrm{O}_{5}-\mathrm{O}_{7}$	2	$2 \cdot 79$	$\mathrm{O}_{6}-\mathrm{O}_{2}$	2	2.71	$\mathrm{O}_{7}-\mathrm{O}_{5}$	2	2.79	$\mathrm{Na}_{2}-\mathrm{O}_{4}$	2	$2 \cdot 51$
$\mathrm{O}_{5}-\mathrm{O}_{1}$	2	$2 \cdot 77$	$\mathrm{O}_{6}-\mathrm{O}_{3}$	2	$2 \cdot 81$	$\mathrm{O}_{7}-\mathrm{O}_{4}$	2	$2 \cdot 88$	$\mathrm{Na}_{2}-\mathrm{O}_{3}$	2	$2 \cdot 62$
$\mathrm{O}_{5}-\mathrm{O}_{2}$	2	$2 \cdot 84$	$\mathrm{O}_{6}-\mathrm{O}_{4}$	2	$2 \cdot 65$	$\mathrm{O}_{7}-\mathrm{O}_{1}$	2	$2 \cdot 85$			

Fig. 1. The structure of $\mathrm{Na}_{2} \mathrm{Ti}_{3} \mathrm{O}_{7}$ seen in projection down the b axis. Bonds to oxygen (large circles) from titanium (small circles) are shown, the lighter circles representing atoms at the level $y=\frac{1}{4}$, the heavier at $y=\frac{3}{4}$. The bonds from sodium (medium circles) to oxygen are drawn as dotted lines, and the unit cell is shown in outline.
$\mathrm{O}-\mathrm{O} \pm 0.045 \AA$ and $\mathrm{Na}-\mathrm{O} \pm 0.030 \AA$. These are in good agreement with the more extensive data on $\mathrm{K}_{2} \mathrm{Ti}_{2} \mathrm{O}_{5}$ (Andersson \& Wadsley, 1961) based on a least squares assessment.

Description

The crystal structure of $\mathrm{Na}_{2} \mathrm{Ti}_{3} \mathrm{O}_{7}$ is shown diagrammatically in Fig. 1. The basic unit, seen in projection, is a block of six TiO_{6} octahedra, three at one level, three at a distance $b / 2 \AA$ above (and below) which are joined by having edges in common. This extends out of the plane of the paper as a zig-zag ribbon of octahedra limited to three in width. Identical blocks are joined together by having corners in common to form a two-dimensional sheet of the composition $\left(\mathrm{Ti}_{3} \mathrm{O}_{7}\right)^{2-}$ centred on the (100) plane.

There is considerable variation in the Ti- O distances for all of the metal atoms (Table 5) which may perhaps be interpreted as a tendency towards five coordination for titanium. This is the most noticeable for Ti_{2} where five bonds to oxygen vary between 1.71 and $1.94 \AA$, the sixth being $2 \cdot 34 \AA$. The five closer oxygens form a distorted trigonal bipyramidal grouping. Although there is some ambiguity about describing a distorted geometrical figure in a closely bonded structure such as this one, the bipyramid has nevertheless been firmly established for Ti^{4+} in $\mathrm{K}_{2} \mathrm{Ti}_{2} \mathrm{O}_{5}$ (Andersson and Wadsley, 1960) and possibly can occur in other titanium compounds as well (Martin and Winter, 1960).

The layers are packed together in such a way as to form two different kinds of position for the sodium
atoms. Na_{1} has a rather unusual oxygen arrangement which, to a first approximation, can be described as a

Fig. 2. Clinographic projection of the ninefold coordination of $\mathrm{Na}_{1}(a)$ and the sevenfold coordination of $\mathrm{Na}_{2}(b)$.
cube, but with two oxygens replaced by a single one at the centre of the edge from which they are missing. Outside the faces opposite this atom are two additional oxygens which complete the irregular ninefold coordination (Fig. 2(a)). The second sodium atom, Na_{2}, is situated in a trigonal prism of oxygens, whilst a seventh oxygen is bonded through the centre of one of the rectangular prism faces (Fig. 2(b)), as in $\mathrm{Na}_{2-x} \mathrm{~V}_{6} \mathrm{O}_{15}$ (Wadsley, 1955).

If each alternate sheet of TiO_{6} octahedra could be displaced upwards by a distance $b / 2$, both of the sodium atoms could find nearly regular cubic positions for themselves. The effect of this would be to impose another space group upon the structure in which the a axis is doubled, the titanium and oxygen positions, in projection, remaining as they are. Several unsuccessful attempts were made to prepare this substance by the prolonged heat treatment of $\mathrm{Na}_{2} \mathrm{Ti}_{3} \mathrm{O}_{7}$ at a variety of temperatures as well as by quenching, but for reasons which are not at all obvious, the sodium ions do not influence the structure in favour of the proposed dimorph which would appear to have a more reasonable structure.

As a whole, $\mathrm{Na}_{2} \mathrm{Ti}_{3} \mathrm{O}_{7}$ has certain similarities to $\mathrm{Li}_{1+x} \mathrm{~V}_{3} \mathrm{O}_{8}$ (Wadsley, 1957), which consists of layers made up from distorted VO_{6} octahedra one of which can almost certainly be regarded as a trigonal bipyramid. These layers are held together by lithium atoms occupying octahedral positions, and also, perhaps, some of the tetrahedral spaces which are also present.

Discussion

The prominent sub-cell which proved to be so useful in solving the structure, could be regarded as pseudocubic and related to perovskite, ABO_{3}. In this simple structure the B atoms form oxygen octahedra which, by sharing all corners with similar octahedra, create cubic, or perhaps twelve-coordinated, sites for the A atoms.

The formation of a sub-cell by $\mathrm{Na}_{2} \mathrm{Ti}_{3} \mathrm{O}_{7}$ is due to three structural fcatures.
(a) The oxygen and sodium atoms form an approximately square lattice in projection down the b axis which is similar to the projection of the perovskite lattice, except in terms of the relative positions of the atoms of different kinds.
(b) Titanium overlies some of the positions in which oxygen alone occurs in perovskite. This is a consequence of edge sharing.
(c) The two kinds of sodium are both surrounded by 2 Na and 2 Ti roughly in a square, but in different ways.

The net effect of these three conditions is to force a superficial statistical resemblance to a simple structure upon a complex one which, in fact, is related to it scarcely, if at all. The partial disordering of the $\left(\mathrm{Ti}_{3} \mathrm{O}_{7}\right)^{2-}$ layers which occurs on quenching from high temperatures, will force upon it an even greater similarity to perovskite if Debye-Scherrer photographs alone are used for identification. This point of view, and the likelihood of the change of co-ordination number of the octahedrally grouped ion (Andersson \& Wadsley, 1960), have some importance in crystallographic studies of the defect solid state, and will be given a more general treatment by us elsewhere.
The layer structure of $\mathrm{Na}_{2} \mathrm{Ti}_{3} \mathrm{O}_{7}$ is reflected in its chemical properties. Weiss \& Weiss (1960) recently showed that the di- and trititanates can exchange Na or K for long chain alkylammonium ions as well as for other metals, and this causes an expansion perpendicular to the sheets. Their X-ray data for a dititanate, however, indicate that the compound they actually used was a trititanate instead, the loss of sodium which we found to occur in preparation evidently being overlooked by them. The structure of $\mathrm{K}_{2} \mathrm{Ti}_{2} \mathrm{O}_{5}$ does suggest that this substance might also have exchange properties. This would be difficult to observe as the compound undergoes rapid hydrolysis to form completely different phases, even on exposure to moist air (Anderson \& Wadsley, 1961).

References

Andersson, S. \& Wadsley, A. D. (1960). Nature, Lond. 187, 499.
Andersson, S. \& Wadsley, A. D. (1961). Acta Chem. Scand. 15, 663.
Freeman, A. J. \& Watson, R. E. (1959). Quart. Progr. Rep. Solid State Mol. Str. Group, M.I.T., p. 16.
Freeman, A. J. (1959). Acta Cryst. 12, 261.
Levin, E. M. \& McMurdie, H. F. (Editors). (1959). Phase Diagrams for Ceramists, Part II. Fig. 1013, p. 8. The Amer. Ceramic Soc., Ohio, U.S.A.
Lipson, H. \& Cochran, W. (1953). The Determination of Crystal Structures, p. 307. London: Bell.
Martin, R. L. \& Winter, G. (1960). Nature, Lond. 188, 313.

Suzuki, T. (1960). Acta Cryst. 13, 279.
Wadsley, A. D. (1955). Acta Cryst. 8, 695.
Wadsley, A. D. (1957). Acta Cryst. 10, 261.
Weiss, A. \& Weiss, A. (1960). Ang. Chem. 72, 413.

